Multinuclear NMR: Easy or Difficult? (Tips for Solid-state NMR)

> How easy or difficult NMR measurements are depends on various factors. Sensitivity (S/N ratio) may be estimated in terms of receptivity given by the following formula. Large gyromagnetic ratio γ and natural abundance N_{abd} lead to large receptivity for ¹⁹F and ²⁷Al, for example.

$$R_{A}(X) = \left| \frac{\gamma(X)}{\gamma(A)} \right|^{3} \frac{I(X) [I(X) + 1]}{I(A) [I(A) + 1]} \frac{N_{abd}(X)}{N_{abd}(A)}$$

A : reference nucleus (¹H or ¹³C) γ : gyromagnetic ratio

I : spin quantum number N_{abd} : natural abundance

> Low- γ nuclei exhibiting low NMR frequencies ($\propto \gamma$), such as ²⁵Mg and ^{47,49}Ti, may suffer from ringing effects, making their measurements difficult.

> In solid-state NMR, it is easy to obtain high-resolution spectra for the nuclei with spin quantum number of 1/2, like ¹³C and ³¹P, while difficult for those having larger quantum number than 1/2, in general, because of quadrupolar broadening. Half integer spins (I=3/2, 5/2, 7/2, 9/2), such as ¹¹B and ²³Na, may yield high-resolution spectra via special techniques like MQMAS. These techniques are not applicable to integer spins (I=1, 3, ...), such as ¹⁰B and ¹⁴N.

> Although ¹H high-power decoupling is widely utilized in solid-state NMR, the nuclei experiencing weak ¹H dipolar interactions like ²⁹Si require not so strong decoupling. It is difficult to decouple ¹H-¹H interactions, rendering solid-state ¹H measurements difficult.

> In solids, chemical shifts vary depending on the nuclear orientations (CSA: chemical shift anisotropy). For the nuclei having large CSA, such as ¹⁹⁵Pt and ²⁰⁷Pb, magic angle sample spinning with realistic speeds cannot remove spinning sidebands.

> Another factor of long longitudinal relaxation times T_1 makes measurements difficult.

Article giving more detailed description, "T. Nakai, New Glass, 28(2),17-28 (2013)" (in Japanese) is available. The request to sales or sales promotion team is highly appreciated.

http://www.jeol.co.jp http://j-resonance.com Copyright @ 2015 JEOL RESONANCE Inc.

JEOL RESONANCE Application Note

Application Note NM140009E

Nucleus	Spin Quantum Number	Gyromagnetti c Ratio ¥ (= γ/2p) [MHz/T]	NMR Frequency at 11.75 T v ₀ [MHz]	NMR Frequency at 24.20 T v ₀ [MHz]	Natural Abundance N _{abd} [%]	Receptivity [§] (Relative Sensitivity)		Magnetic Dipolar Interaction with ¹ H	Chemical Shift Anisotropy Δδ (X) (for Spin-1/2 Nuclei)	
(ioninhe)						Normalized to ¹ H R _H (X)	Normalized to ¹³ C R _c (X)	(for Spin-1/2 Nuclei)	[ppm]	[kHz] a 11.75 1
¹ H	1/2	42.577 48	500.28	1030.36	99.99	1	5660	-	≾ 20	≾ 10 ≾ 20
² H	1	6.535 8	76.80	158.17	0.015	1.45×10 ⁻⁶	0.00821	Legend of Nucleus		
⁶ Li	1	6.265 7	73.62	151.63	7.5	6.37×10 ⁻⁴	3.61	Everybody's Playmate	Good	Worke
⁷ Li	3/2	16.547 3	194.43	400.44	92.5	0.272	1540		X	
¹⁰ B	3	4.574 5	53.75	110.70	19.7	3.91×10 ⁻³	22.1	Cinderella Nucleus	Sleeping	Beaut
¹¹ B	3/2	13.660 5	160.51	330.58	80.1	0.132	747			
¹³ C	1/2	10.708 4	125.82	259.14	1.11	1.77×10 ⁻⁴	1	~ 23 (for r(¹³ C - ¹ H) = 1.09 Å)	≾ 200	≾ 25 ≾ 50
¹⁴ N	1	3.076 6	36.15	74.45	99.63	1.00×10 ⁻³	5.68	—	-	_
¹⁵ N	1/2	-4.314 4	50.69	104.41	0.37	3.85×10 ⁻⁶	0.0218	\sim 12 (for r(¹⁵ N - ¹ H) = 1.01 Å)	≾ 200	≾ 10 ≾ 20
¹⁷ 0	5/2	-5.771 8	67.82	139.68	0.038	1.10×10 ⁻⁵	0.0625	_	_	_
¹⁹ F	1/2	40.055 6	470.65	969.35	100	0.833	4710	\sim 30 (for r(¹⁹ F - ¹ H) = 1.55 Å)	≾ 400	≾ 200 ≾ 400
²³ Na	3/2	11.262 6	132.34	272.56	100	0.0926	524	-	-	_
²⁵ Mg	5/2	-2.606 6	30.63	63.08	10.1	2.70×10 ⁻⁴	1.53		-	_
27 AI	5/2	11.094 4	130.36	268.49	100	0.207	1170	·	-	_
²⁹ Si	1/2	- 8.458 9	99.39	204.70	4.69	3.68×10 ⁻⁴	2.08	~ 4.5 (for r(²⁹ Si - ¹ H) = 1.74 Å)	≾ 100	≾ 10 ≾ 20
³¹ P	1/2	17.235 7	202.52	417.10	100	0.0663	374	~ 17 (for r(³¹ P - ¹ H) = 1.43 Å)	≾ 400	≾ 80 ≾ 16
⁴³ Ca	7/2	-2.865 5	33.67	69.35	0.135	8.64×10 ⁻⁶	0.0489	Legend of Nucleus Properties Spin Quantum Number NMR Frequency		
47Ti	5/2	- 2.400 46	28.254	58.191	7.4	1.55×10 ⁻⁴	0.876	1/2 Half-integer	10	300 0 - 300
⁴⁹ Ti	7/2	- 2.405 23	28.261	58.207	5.5	2.08×10 ⁻⁴	1.18	Natural Abundance Rece	ptivity	0 - 100 0 - 50
⁷⁹ Br	3/2	10.667 2	125.34	258.15	50.69	0.0399	226	X 10-80		gh edium w
⁸⁷ Rb	3/2	13.931 8	163.70	337.15	27.83	0.0488	276	Dipolar Int. 0 - 1 CS A	niso.	v Spin-av
93Nb	9/2	10.407 1	122.28	251.85	100	0.482	2730	Challenging	Can	Spin-aw actable
¹⁰³ Rh	1/2	- 1.340 1	15.75	32.43	100	3.12×10 ⁻⁵	0.177	~ 0.78 (for r(¹⁰³ Rh - ¹ H) = 1.69	≳ 2,000	≾ 30 ≾ 60
¹³³ Cs	7/2	5.584 8	65.62	135.15	100	0.0475	269		-	_
¹¹⁹ Sn	1/2	- 15.869 6	186.47	384.04	8.59	4.45×10 ⁻³	25.2	\sim 9.1 (for r(¹¹⁹ Sn - ¹ H) = 1.70	≾ 1,000	≾ 200 ≾ 400
¹⁷¹ Yb	1/2	7.499 2	88.12	181.48	14.31	7.82×10 ⁻⁴	4.43	~ 2.4 (for r(¹⁷¹ Yb - ¹ H) = 2.06		≾ 15 ≾ 30
¹⁹⁵ Pt	1/2	9.152 6	107.54	221.49	33.8	3.36×10 ⁻³	19.0	\sim 7.2 (for r(¹⁹⁵ Pt - ¹ H) = 1.53 Å)	≾ 5,000	≾ 500 ≾ 1.00
²⁰⁷ Pb	1/2	8.907 6	104.66	215.55	22.8	2.09×10 ⁻³	11.8	~ 4.0 (for r(²⁰⁷ Pb - ¹ H) = 1.84	≾ 5,000	≾ 50 ≾ 1,00
t	γ(¹ H) = 2.675 222 005 (± 0.000 000 063) x 10 ⁸ [rad/s 1/T]					‡	$\ddagger \gamma (^{13}\text{C}) = 0.672\ 828\ 410\ \times\ 10^8\ [rad/s\ 1/T]$			
ş	$R_A(X) =$	$R_{A}(X) = [I(X) (I(X)+1)] / [I(A) (I(A)+1)] (N_{abo}(X) / N_{abo}(A)) \gamma(X) / \gamma(A) ^{3}$ $D(X^{+}H) = (I_{1,2} / 4\pi) (h^{2} Y(X) Y^{+}H) / r(Y^{+}H)^{3} [I_{2}H_{2}/A, 2]$					ſ	$ U('H-'H) = (\mu_0 / 4\pi) (h^{\circ} Y('H)^{\circ} / r('H-'H)^{\circ}) [kHz/Å]$ = 120 120 3 [kHz/Å ³] (for r ⁽¹ H- ¹ H) = 1 Å)		
*	b = 6.626	0755×10^{-3}	4 [.l•s]	$\hbar = h/2\pi [(.)$	J·s) /rad] u	$h_0 = 4\pi \times 10^{-7}$ (H/m	nl	$u_0 / 4\pi = 10^{-7} [H/(m \cdot rad)]$	- 11) - 1 A	/

JEOL RESONANCE

http://www.jeol.co.jp http://j-resonance.com Copyright © 2015JEOL RESONANCE Inc.